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We present molecular dynamics computations of the time-dependent auto- 
correlation function of the single-particle density in a classical one-com- 
ponent plasma for three thermodynamic states in the range of intermediate 
and strong coupling. The deviations from the Gaussian approximation are 
calculated and the data are analyzed by the standard memory function 
formalism. 

KEY WORDS : One-component plasma ; Van Hove function ; density self- 
correlation function; dynamical structure factor; memory function; 
molecular dynamics simulations. 

1. INTRODUCTION 

The one-component plasma (OCP) is a simplified model of very dense and 
completely ionized matter in which the ions are classical point charges moving 
in a uniform and rigid background provided by the degenerate electron gas. 
The model is of relevance in extreme astrophysical situations (e.g., white 
dwarf stars) and possibly in the laser-compressed plasmas used in fusion 
experiments. It has recently been the object of  intense theoretical study, in 
particular by computer simulations. Molecular dynamics (MD) "experi- 
ments"  have yielded a wealth of information on the collective modes (1~ and 
the transport coefficients (2> of the OCP in the intermediate and strong 
coupling regimes. The single-particle (or "self  ") motion has also been studied 
in Ref. 1 through the computation of the velocity autocorrelation function, 
indicating a very strong coupling between single-particle and collective 
motions. However, the self part of the density autocorrelation function (or 
Van Hove function) had not yet been computed for nonzero wave vectors. 
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It is the purpose of this paper to present MD results of this correlation 
function for systems of 128 and 250 ions; in particular, we have systematically 
computed the deviations of the correlation function from its Gaussian approx- 
imation (e.g., Ref. 3) and we have analyzed the data using the standard 
memory function formalism. 

The paper is organized as follows: The basic definitions are recalled in 
Section 2. The computational technique, which is based on the expansion of 
the self intermediate scattering function in terms of the moments of the Van 
Hove function, (4) is presented in Section 3 together with the numerical results 
and the estimate of the statistical uncertainties, based on an exact micro- 
canonical calculation. The memory function analysis and approximate 
relations between the total and self intermediate scattering functions are 
examined in Sections 4 and 5, and some concluding remarks are contained in 
the last section. 

2. BASIC  D E F I N I T I O N S  

We consider a system of Nions of charge Ze enclosed in a cubic volume V 
with periodic boundary conditions. From the mean number density p = N/V,  
we define our unit of length, the ion sphere radius 

r0 = (3/4rrp) 113 

As unit of time we choose the inverse plasma frequency wy 1, where 

wp 2 = 4rrp(Ze)2/m 

I f  the interactions are purely Coulombic, the dimensionless transport 
coefficients and excess thermodynamic properties depend on the single dimen- 
sionless coupling parameter 

P = 5(Ze)=/ro 

where/~ = 1/k~T. 
Let p~(r, t) be the microscopic density of the ith particle at time t: 

p,(r, t) = 3(r - r,(t)) (1) 

The self part of the Van Hove function (5~ is the autocorrelation function (acf) 
of  the dynamical variable p=; for a stationary, homogeneous, and isotropic 
fluid 

G~(r, t) = V<m(r, t)p,(O, 0)> (2) 

The brackets denote a statistical equilibrium average. G,(r, t) is proportional 
to the probability density for having at time t a particle at a distance r from 
the origin, conditional upon its presence at the origin at t = 0. 
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The spatial Fourier transform of G~ is the self intermediate scattering 
function: 

F,(k, t) = (p~(k, t )p , ( -k ,  0)) (3) 

where p,(k, t) = exp[- ik . r , ( t ) ] .  We introduce the Laplace transform of the 
self intermediate scattering function: 

ff~(k, w) = dt e'~tF~(k, t) (4) 

and its Fourier transform, the self dynamical structure factor: 

S,(k, oJ) = (1/2~r) dt e'~tF~(k, t) (5) 
oo 

= ( l l=)ff / (k,  ~) (6) 

where the prime denotes the real part. 
The short-time expansion of F,(k, t) reads for the OCP ~ 

F.(k, t) = 1 - wo2t2/2! + COo2a~.t~/4! _ oo o2oJ2~ t ,  6/6., + O(t") (7) 

where 

ojo 2 = (q2/3F)c%2 

o,L = (q2/r  + 1/3)o, ,  2 

oJ~s = (15/9)(q4/F 2 + q2/I') + f lm(d~) 

where q = k. r0 and d~ denotes the derivative of the ith particle acceleration 
in the z direction. 

The even moments of the Van Hove function are defined as 

(r2~(t)) = ([r,(t) - r,(0)] 2~) (8) 

From its moments the Van Hove function can be reconstructed as ~4~ 

G , ( r , t ) =  (~/Tr)a/2e-~r~[ 1 +  ~=2 ~ a~(t)L~/2(~r2)] (9) 

where ~-~(t) = 2(r2(t))/3 and the L] 12 are Laguerre polynomials obeying the 
orthogonality condition 

f 27r ]?(n + 3/2) dr e-  ~r2L~/2(ar 2)L~!2(ar 2) = 3,,, a8/2 n ! 

The coefficients a,(t) are calculated from the moments (r  2~(t)) by the relation 

a.(t) = ~ ( -  1)"C.P..(t) (10) 
io=0 
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where 

and 

%(0 = [3P/(2P + 1)!!]up(t) - 1, co(t) = El(t) = 1 (11) 

uv(t ) = ( r2P( t ) ) / ( r2 ( t ) )  p (12) 

The spatial Fourier transform of (9) yields 

We introduce the well-known memory function formalism (e.g., Ref. 3, 
Chapter 9), which we shall use in Section 4. Let Ms(k,  t) [resp. Ns(k, t)] be 
the memory function associated with Fs(k, t) [resp. Ms(k,  t)]. The short- 
time expansion of these functions are obtained directly from (7) as 

M~(k, t) = w02[1 - (co~s - c0o2)t2/2! + O(t4)] (14) 

N~(k, t)  = co~, - coo 2 - (oo~s - co~)t~/2! + O(t  4) (15) 

Then the normalized memory functions are defined by 

m~(k, t)  = Ms(k,  t)/wo 2 (16) 

n~(k, t) = N~(k, t)/(co~s - coo 2) (17) 

and we denote by rhs(k, co) and fis(k, co) their Laplace transforms. We can 
express Fs(k, co) in terms of rhs(k, co) as 

Fs(k, co) - l [ [ - ico + coo2r~,(k, o~)1 (18) 

or in terms of fi,(k, co) as 

1 (19) 
F~(k, co) = _ ico + coo2/[-ico + (co~s - COo2)n~( k,  co)] 

Several approximations for ms(k, t)  and n~(k, t) are considered in Section 4. 

3. C O M P U T A T I O N A L  T E C H N I Q U E  A N D  RESULTS 

We have computed, for the three values of P _ 1, t0, and 100, the five 
first even moments of the Van Hove function as functions of time, from the 
data obtained by the MD method. From these moments, we have deduced 
the coefficients a~(t) with the help of (10)-(12), and then the functions FAk,  t) 
with the help of (13) for several values of k. 

At P --- 1 (resp. P ___ 10 and 100), we have simulated a periodic system 
of N = 128 (resp. N = 250) particles. The algorithm of Verlet (6~ has been 
used for the integration of the classical equations of motion for the 3N 
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Table I. Parameters for the M D  Calculat ions a 

F N No At T n~ Arc 

1 128 9900 0.04 396 6 1650 

9.88 250 1650 0.08 123 3 550 
9.82 250 1650 0.08 123 3 550 

100. 250 1800 0.3 540 1 1800 
m 

N is the total number of particles. No is the number of steps for each run. At is the time 
step in units of o~p-1. T is the total time of the experiment (T = No At) in units of o~21. 
nc is the number of time intervals between two stored configurations. Arc is the total 
number of stored configurations (No = No/n~). 

degrees of  freedom, requiring the calculation of the forces between particles, 
and the choice of  a time increment At. This parameter  has been selected to 
ensure in the computations a good conservation of the total energy and to 
minimize the accumulation of  the roundoff  errors. (2) We have taken account 
of  the long range of the Coulombic forces by the Ewald summations over the 
periodic replicas of  the system. (7) Each experiment ran over No time steps, 
corresponding to a total time T = No At (cf. Table I). The configurations 
were kept on magnetic tape every nc steps (i.e., at time intervals of  Ate = n~ At). 
All the parameters for each run are presented in Table I. 

We obtain the moments by taking the statistical average both on the N 
particles and on the Nc - nt possible choices of  the time origin (t = nt Ate). 
Thus 

N c  --  7~ t 

r2 , ( t )  = N1 Arc 1_ nt ~ [r,([n + n t l  Atc) -- r,(n At~)] 2" (20) 
i = 1  ~ = 1  

where r2P(t) is the M D  estimate of  <r2P(t)>. 
The first even moment  r2(t)  leads to the well-known limit 

lira r2( t )  = 6Dr  - 6 E  (21) 
~--* oO 

where D is the self-diffusion coefficient. The values of  D and E are given in 
Table II. The self-diffusion coefficients calculated in this way are in good 
agreement with those calculated f rom the velocity acf. (1) Because r2(t)  
converges rapidly to its limit (21), we have fitted it by 

r2(t) = 6E[(Dt/E) - 1 + e x p ( -  Dt/E)] (22) 

This fit has the disadvantage of eliminating the oscillations expected at a 
frequency near ~op, since it corresponds to an exponential form for the 
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Table II. Values of  D and E in Eq. (21) ,  Together  w i t h  M and tc ~ 

1 ~ D E M x  100 to 

1 2.05 11.8 4.3 11 
9.85 0.124 0.56 3.8 5.4 

100. 6.02 x 10 -a 7.0 x 10 -a 4.94 57 

M is the maximum of a2(t) at t = to. D is in units of c%ro 2 and E in units of ro 2. 

veloci ty  acf, which has been shown to exhibi t  m a r k e d  osci l la t ions ~1~ at  F = 10 
and  100. On the o ther  hand,  in the  t = 0 l imit ,  the correc t  behavior  p ropo r -  
t ional  to t 2 is correc t ly  p red ic ted  in (22) i f  

D2/E = l/tim (23) 

This  re la t ion  is effectively well verified at  F _ 1, and  app rox ima te ly  at  

F = 1 0 a n d l 0 0 .  
The  o ther  momen t s  behave  for  long t imes as 

r2p(t) = [(2p + 1)!/p!l(Dt)" + O(t ,-1) 

The  coefficients a,(t) are represen ted  in Figs.  1, 2, and  3 for  P ~_ 1, 10, 
and  100), respect ively for  2 ~< n ~ 5. They  are  affected by  rela t ively large 
stat is t ical  errors ,  par t ly  due to  the  fact  tha t  they  are  ob ta ined  as com- 
b ina t ions  o f  the  " m e a s u r e d "  ra t ios  %(t) [see Eqs. (10)-(12)], which lead to 
apprec iab le  cancel lat ions.  W e  observe tha t  for  the  three  values o f  I', the  
a,(t) are  always less than  10-2, except  for  t imes a r o u n d  to, where  a2(t) reaches  
its m a x i m u m  M ( M  and  tc are  given in Table  II) .  The  values of  M are  five 
to  ten  t imes smal ler  than  in the  cases o f  the simple liquids. ~4~ No te  tha t  the 
coefficients a2(t) vanish  very slowly at  long times. 

We see f rom Figs. 1-3 tha t  the  stat ic coefficients a,(t = 0) are  nonzero.  

I f  ca lcula ted  on a canonical  ensemble  they  vanish,  but  on a mic rocanonica l  

Fig. 1. Coefficients a~(t) x 10 2 at I" __ 1 for n = 2, 3, 4, 5. ( ) a2(t). (---) aa(t). 
(-.-) a~(t). (-. .-) as(t). 
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Fig. 2. Same as Fig. 1, for 1 ~ ~ 10. 

ensemble  res t r ic ted to zero total momentum the an(0) are indeed nonzero .  We 
assume tha t  the  values on the microcanonica l  ensemble  are  ident ical  to the 
values ca lcula ted  in a hypothe t ica l  M D  exper iment  o f  infinite length. Hence  
we es t imate  the statist ical  uncer ta int ies  3 o f  the M D  results by 

3~(t = 0) = ]ami~176 = 0) -- a~D(t = 0)1 (24) 

We have ca lcula ted  the coefficients a~J~176 = 0), by  in t roduc ing  as an 
in t e rmed ia ry  o f  ca lcula t ion a canonical  ensemble  co r re spond ing  to zero total 
momentum. This al lows us to separa te  the con t r ibu t ions  ar is ing f rom the 
energy f luctuat ions on the one hand  and o f  the to ta l  m o m e n t u m  on the o ther  
hand.  We have found  tha t  only the  coefficient a~~176 = 0) is nonzero.  The  
detai ls  are given in the appendix .  W e  give in Table  II1 the values ob ta ined  for  
a2(t = 0) and  3n(t --- 0). 

,., .:._:z-.. 

. 

t / 

I / 

Fig. 3. Same as Fig. 1, for 1 ~ "~ 100. 
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Table III. Estimates of the Statistical Uncertainties 8, at Time t = 0 for the 
Coefficients Given by (24) ~ 

F a ~ ~  ~tt = O) a2~D (t = O) ~2 8a ~4 8s 

1 -4.85 -6.5 1.7 3.5 5.5 7. 
10 -2 .  0 2. 2.5 ~0 2.5 

100 -1.3 -1.8 0.5 2.5 1.8 1.5 

a~ l~176 is calculated in the Appendix [Eq. (A8)]. All values are multiplied by 100. 

Consequently, for the calculation of Fs(k, t), we must correct the MD 
data of r2(t) and a,(t). But at short times, the corrections are negligible and 
at long times the errors on F~(k, t) are essentially the result of the truncation 
of the summation in (13). Therefore the values are correct as long as we can 
neglect the rest of the sum. When this is no longer justified, Fs(k, t) is less 
than 10 -2 , i.e., below the noise level. 

We find that F~(k, t) is a decreasing function of t, with an exponential 
form at long times. The influence of the collective modes is drowned in the 
purely diffusive character of the single-particle motion. 

Since the coefficients a,(t) are very small, the Gaussian approximation 
for F~(k, t) is excellent: we denote by F~a(k, t) the corresponding function. 
We denote by aF F~ (k, t) the same approximation in which we replace r2(t) 
by the fit (22). The analysis of these approximations is made on their Laplace 
transform ffs(k, ~o). We have collected all the results in Section 4 (see Tables 
IV-VI and Figs. 4-9). 

4. A N A L Y S I S  OF Fs(k, to) F R O M  T H E  M E M O R Y  
F U N C T I O N  F O R M A L I S M  

We approximate by an exponential or Gaussian form the normalized 
memory functions introduced in (16) and (17). We measure the accuracy of 
these approximations compared to " the  exact ff~D(k, ~o), obtained from the 
MD data, by calculating the root mean square deviation 8 with respect to the 
value ff~D(k, co): 

I fo Ax ]1,2 
= IgVD(k ,  0)o~AxJo [g~ ' (k ,  o~) - L(k,  ~o)12 do~ (25) 

where wr~ax is taken equal to 2oJp. The results of these calculations are 
presented in Tables IV, V, and VI) for F _ 1, 10, and 100, respectively. 
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Table IV. Deviation of the Approximate Value of ~s(k, to) from the Exact 
Value, for Various Values of k, for r _~ 1 ~ 

i 

q G GF ME MG M G F  HE NG N G F  

0.2 3.1 3.2 5.5 110 4.5 1.5 31 3.0 
0.4 1.7 2.0 7.0 29 1.6 0.4 27 2.8 
0.6 0.9 1.1 6.3 9.3 0.3 1.5 17 1.4 
1. 0.7 1. 10. 2.1 0.9 5.6 11 0.7 
1.4 0.4 0.8 11. 2. 1.5 7.6 28 0.9 
1.9 0.2 0.7 12. 3.5 1.8 8.9 29 1.2 
i 

a The deviation is measured by 1008, where 8 is given by (25). The headings of the columns 
refer to the various approximations defined in Section 4. 

Table V. Deviation of the Approximate Value of /E~(k, to) from the Exact 
Value, for Various Values of k, for r _~ 10 r 

q G GF ME MG M G F  NE NG N G F  

0.3 2. 1.7 1.8 180 5.4 4.1 8 3.2 
0.6 3.6 3.9 3.8 72 9.1 7.8 13. 6.3 
0.9 2.0 3.3 2.1 38 7.4 7.1 14. 4.7 
2.3 0.7 4.9 5.3 1.4 1.1 6.3 5.8 1.4 
4. 0.6 8.1 10.3 3.2 1.4 7.9 1.8 1.2 
6. 0.2 8.4 11. 4.2 1.7 9.3 5.5 1.4 

" See footnote to Table IV. 

Table VI. Deviation of the Approximate Value of fls(k, to) from the Exact 
Value, for Various Values of k, for r ~ 100 a 

q G GF ME MG M G F  NE NG N G F  

0.6 0.09 0.06 0.8 144 0.06 1.1 0.8 0.4 
0.9 0.8 0.3 1.1 82 0.3 2.2 1.6 1.0 
1.2 2.5 2.0 2.2 60 1.6 3.4 3.4 2.1 
1.9 6.6 6.0 5.8 42 3.8 3.4 7.2 3.1 
3. 6. 5.5 8.2 23 5.3 4.4 6.0 4.2 
6. 1.5 1.7 7.8 7.9 1.7 7.0 2.1 1.9 

"See footnote to Table IV. 



456 B. Bernu 
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.!" "X. 

. . . .  ~ .  " ~  

P 

o;s ,L <1 

Fig. 4. Plot of A(q) for I ~ = 1, using the 
various approximations defined in the text 
(q = k.ro). ( ) MD data; the ME, MGF,  
NE, NGF,  G, and GF results are practically 
indistinguishable from these MD data. ( - . . - )  
MG approximation). ( - . - )  NG approxima- 
tion. 

Two other interesting quantities are the values of ffs(k, 0) and the half- 
width at half-height o~1/2 offf~(k, o~). We consider the following dimensionless 
quantities(a~: 

Z(k) = k2Dff~(k, O) (26) 

A(k) = oJ1/2/k2D (27) 

which go to one in the hydrodynamic limit k = 0. The quantities Z(k) and 
A(k) are represented in Figs. 4-9. 

The short-time behavior of the following approximations being well 
known, (3) we pay particular attention to their variations as a function of co. 

(i) Exponential form for ms(k, t): We characterize this function by a 
single relaxation time rm(k ) depending only on k, 

ms(k, t) = e x p [ -  t/tin(k)] (28) 

-cm(k) is chosen so as to yield the "exac t "  limit co = 0 for ff~E(k, co). Thus 
we have 

.cm(k) = fimD/Zr~D(k) = ~Oo2/ff~D(k, O) 

5 

/ 

. . . . . - . Z . . I  I " "  -J  
/ /  .,~.,~'" 

o 4. q 
~  

Fig. 5. For F "~ 1, plot of~](q), using the various 
approximations defined in the text (q = k. ro). The 
key is the same as in Fig. 4. 
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Fig. 6. Same as Fig. 4, for I ~ ~ 10. 

O",  

1. 

0.5 

"~ , , . .  P='JO 

Fig. 7. Same as Fig. 5, for r _~ 10; ( - - - )  GF  
approximation. 

5 

2 

/ ',f 
J P=IO 

Fig. 8. Same as Fig. 4,  for I ~ --- 100; ( - - - )  N E  
approximation.  

4 

P = #00 

~o 20 ' ~  
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Fig. 9. Same as Fig. 5, for F _~ 100. lb io q 

By definition ZM~(k) is identical with E•D(k). The variations of AMY'(k) 
reproduce qualitatively those of &MD(k). 

(ii) Exponential form for ns(k, t): In a way similar to (28), we write 

ns(k, t) = exp [ - t l , , ( k ) ]  (29) 

and r,(k) is again selected to give the "exac t"  limit ~o = 0 for f f~(k ,  oJ), 
so that 

r,(k) = Z~/[[3mD(oJ~s - oJ02)] = ffyV(k, 0)/(O~o2~O~s - Wo *) 

The values obtained for Z~E(k) are still equal to ZMV(k). The variations of 
ANE(k) are very close to the MD results. 

(iii) Gaussian form for m~(k, t): We now assume a Gaussian form for 

ms(k, t): 

ms(k, t) = exp[-�89 2] (30) 

We express Bm(k) in two distinct ways. Either from ZMD(k), as in the two 
preceding cases [we note ff~aF(k, co)], or from the exact behavior at short 
times, by Eq. (14) (we write ff~a(k, w)]: 

B~a~(k) = �89 2 = �89 oJ)] 2 (31) 

BMma(k) = co~s _ oJ02 (32) 

In the second case, we do not obtain the correct hydrodynamic limit for 
Y~G(k). But values obtained for ZMaF(k) and AMar(k) are excellent. 



Single-Particle Motion in the Strongly Coupled One-Component Plasma 459 

(iv) Gaussian form for n,(k, t): We use the following form: 

n~(k, t) = exp[-�89 2] (33) 

As in the preceding case, we have two ways to express B~(k). The "exac t"  
limit ~o = 0 for ffz~ar(k, oJ) defines B~ar(k) as 

~r [(~o~ ~M~_~klfimD12 ~- [ oJ~ -- oJo 2 12 
B aF(k) = _ - -  - -  _ = L o iVD(k, 0 ) j  

(34) 

By definition, Y,N~ is still equal to ZMD(k). The variations of ANar(k) are 
almost identical to those of  A~D(k). 

The other choice for B~ is determined by the exact behavior at short 
times, from (17): 

= - - 

By taking this Gaussian form for n~(k, t). Vieillefosse and Hansen (~) expressed 
the diffusion coefficient for the OCP as 

fimD = 1/[(2o2fi~(0, 0)] = (1/f2o2)[2B~a(O)/~r] ~/2 

where f2o 2 = o~p2/3. Inversely, from the diffusion coefficient, we calculate 
Na B,  . For  nonzero k, we have ~4~ 

B~a(k) = B~G(0) + 3co02(3 + 2oJo2/f~o 2) 
1 + 2~Oo2/f~o ~ (35) 

The corresponding values of  ZNa(k) are too small at small k and too large 
at large k. 

In conclusion, the better approximations are those that reproduce the 
"exac t "  oJ = 0 limit for is(k, w) (ME, NE, MGF, NGF).  For  these approxi- 
mations the variations of A(k) are quantitatively near their MD values. But 
some differences arise for co ~ �89 and co ~ 2oJz/2. The former are essentially 
accounted for by 3 (see Tables IV-VI), while the latter yield different behaviors 
for if(k, w) as shown in the next section. 

5. RELATIONS BETWEEN [~(k. ~o) A N D  i~(k. ~) 

Different theories allow us to relate ff~(k, oJ) and if(k, o J), the total 
intermediate scattering function. The memory function formalism allows us to 
derive relations between ff,(k, oJ) and if(k, oJ) (Ref. 3, Chapter 9) by introduc- 
ing some approximations between their memory functions. The Vineyard 
approximation (1~ amounts to equalizing the memory functions Ms(k, t) and 
M(k, t), and leads to the relation 

F(k, ,o) = S(k)L(k,  ,o) 



460 B. Bernu 

where S(k)  is the static structure factor. This relation is incapable of yielding 
the plasmon mode at the small values of k. 

In the second approximation, by imposing the correct small-time 
behavior between the memory functions 

M~(k, t) = S ( k ) M ( k ,  t) 

we obtain the relation obtained by Kerr(11>: 

S(k)ffs(k,  o~) (36) 
i f(k,  co)= 1 - [S(k) - 1/S(k)[i~off~(k, oJ) - 1] 

The precision of the computations does not allow the use of the MD 
results of ff~D(k, co) to test this relation, because for ~o ,,~ o~1/2, ff~MD(k, oJ) is 
very small. Hence we have replaced Ps(k, co) in (36) by the various approxima- 
tions introduced in Section 4 and we have compared the results with the 
"exac t"  data for S(k ,  co) = (1/rr)ff'(k, oo) obtained by Hansen et al. ~> The 
best agreement is achieved with the NE approximation [exponential form for 

,05 

0.'1 ~ :.6"I..~1 . .  

o 1.0 

(b) 

C•:•/. 38 ./% 
o ,/.0 u~ (,g 

(c) 

- 1 

o ~ 0  (.o 
0 

(d) 
�9 o e  e 

~176 
�9 �9 e l  

| | 

0 t 0  (x) 

Fig. 10. Comparison at F " 10 between the exact dynamical structure factor (dotted 
line) and the one obtained from Eq. (36) with the NE approximation for F~(k, co) [Eq. 
(29)] (solid line), for four values of q = k. ro. 
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Fig. 11. Dispersion curves at I" _~ 1, 10, 100 obtained 
from the approximate NE structure factor [Eqs. (36) 
and (29)] (solid line) and exact results (dots) for 
F ~ 1, 10, 110. Here oJ is in units of o)p and q in units 
of ro- 1. 

"1.5- 

. 

m 

'2 
) 

ns(k, t)], especially for small k. The M G F  and N G F  approximations give 
equally good results for q = kro > 1. 

In Fig. 10, we represent, for I' ___ 10, S~E(k, ~o) for four values of k. 
In Fig. 11, we give the dispersion curves for P ~ 1, 10, 100 obtained from 
the same N E  approximation. The agreement with the "exac t"  MD data of 
Ref. 1 is good. 

6. CONCLUSION 

We have shown that in the strong coupling regime, the deviations from 
the Gaussian behavior of the function Fs(k, t) are weaker than in the case 
of simple liquids. In particular, we do not observe a plasmon peak in/~s(k, m), 
the influence of  the collective motions being less perceptible than in the 
spectrum of the velocity ac fZ( t )Y  ~ This is not very surprising since it is well 
known that in the k ~ 0 limit 

Z(t)  = - l i m  1 d 2 ~-~o "~ - ~  Fs(k, t) 

This means that upon integrating an oscillating Z(t) twice with respect to 
time, the oscillations are essentially smoothed out and their amplitude in 
F~(k, t) is reduced to below the noise level. An estimate of the statistical 
uncertainties has been obtained by an exact calculation in the microcanonical 
ensemble. 

The analysis of the results based on the memory function formalism 
shows that a better accuracy is achieved by imposing the "exac t "  w = 0 limit 
for the function P~(k, w), which contains a global information, rather than by 
imposing the exact short-time behavior. 
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We have also examined the link between the total and self dynamical 
structure factors. Good agreement is achieved once more by using the self 
functions that satisfy the exact ~ = 0 limit. The best results are obtained at 
small k by the NE approximation [Eqs. (36) and (29)]. 

A P P E N D I X  

We calculate, on a microcanonical ensemble characterized by a total 
energy Eo and zero total momentum, the mean value -d(Eo) of a function 
A(rN, PN) of the positions and velocities of the N particles of the system. We 
denote by co(E) the volume of phase space of energy E and zero total 
momentum: 

oJ(E) = dr• dpN 3(H(rN, Pz~) - E) ~ p, (A1) 

The mean value of A on a canonical ensemble at the temperature T, with the 
restriction of zero total momentum, is defined as 

f e-BEoJ(E)A(E) dE 
<A>T,p=o = f e-eEoJ(E) dE (A2) 

We choose to define the temperature T of the canonical ensemble from 
Eo by the implicit relation 

<n)r.p=0 = Eo (A3) 

We now assume that the function A(E) varies slowly and expand A(E) to 
second order around Eo; the first-order term vanishes, due to (A3), and we 
find 

1 d2A(Eo) 
<A>r,p=o = -4(E0) + 2! dE ---------~ <(E - Eo)2>r,,=o + ..- (A4) 

(,0 (fl) (~,) (8) 

(c 0 and (fl) are of the same order of magnitude, while (y)/(a) is of order IlN 
and (3)/(c 0 of order 1IN 2. Hence in (~,) we may replace all the quantities by 
their canonical ensemble values [neglecting terms of order (a)/N2], then (A4) 
can be rewritten as 

-4(Eo) = <A>T,p=o -- ~ kBT2C~(T) d2<A>T (A5) 
d(H>~ 9" 

where C~(T) is the total specific heat at constant volume. For the calculation 
of <A>~,.p=o, we suppose in addition that the interaction potential does not 
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depend on the velocities, and the function A(rN, p~) has the form AI(rN)A2(PN). 
Hence the first term on the rhs of  (A5) separates into 

(A>rm=o = <AI>T<A2>T,p=o (A6) 

Consequently E0 can be expressed from the excess canonical internal 
energy < V>r as 

Eo = ( N -  1)~kzT + (V>T 

For  the OCP, (V>r is very well fitted by the following expression due to 
De Witt(12~: 

(1/NksT)(V>T = aP + bF ~4 + c 

with a = -0.896434, b = 0.861852, and c = -0.55513. 
As an application of (A5) and (A6), we calculate the coefficient a2(t) to 

second order, and the other coefficients to zeroth order. We first express the 
moments r2V(t) in the short-time limit as functions of  microcanonical static 
expressions: 

- - -  [ !  r ? ( o )  1 v ' ~ "  d W , ( o ) l  
r2(t) = V*2(0)t2 + [4 rn 2 + 3 , ( o ) . ~ ] t  + O(t 6) 

A straightforward calculation yields 

From this we derive the coefficients at t = 0 

@~oro(o) - k d C ~ ( T ) ,  ~~176 = a. ( 0 ) = 0  if p > 3  (A8) 

The coefficient a=(t) estimated on a canonical ensemble is proportional to 
t 4 at short times. (~a~ For  the OCP we give its expression to second order in 
time and first order in 1/N: 

where 

1 [NkB 
@'cr~ = - ~  [ c ~  + 18 ~:" + O t 4, (A9) 

~,, 1 dfl(H>T _ 9 3f l (H)r  9fl ~ (A10) 
= N d log  F 2 + N T 

The values of  ~" estimated from the MD data have the same sign as ~:" in 
(A10). But the order of  magnitude is difficult to estimate because the first 
calculated values of a2(t) are for t = 0.12 at P ~ 1 and 0.3 at F ___ 100 and 
higher order terms in the expansion (A9) are probably nonnegligible. Never- 
theless, this order of  magnitude appears to be correctly reproduced by the 
MD data. 
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